
19950510
Lamarckian Learning in Multi-agent Environments

John J. Grefenstette
Navy Center for Applied Research in Artificial Intelligence

Code 5514
Naval Research Laboratory

Washington, DC 20375-5000
E-mail: GREF@AIC.NRL.NAVY.MIL

Abstract
Genetic algorithms gain much of their power from
mechanisms derived from the field of population
genetics. However, it is possible, and in some
cases desirable, to augment the standard mechan-
isms with additional features not available in bio-
logical systems. In this paper, we examine the
use of Lamarckian learning operators in the
SAMUEL architecture. The use of the operators is
illustrated on three tasks in multi-agent environ-
ments.

1 INTRODUCTION

The goal of this work is to explore the application of
machine learning techniques to reactive control problems
arising in competitive, multi-agent domains. In such
domains, traditional AI planning approaches are usually
infeasible, because of the complexity of the multi-agent
interactions and the inherent uncertainty about the future
actions of other agents. On the other hand, genetic algo-
rithms [11] appear to be a promising approach to
developing high performance control strategies.
SAMUEL is our platform for exploring the use of genetic
algorithms to learn control strategies, expressed as sets of
condition/action rules, for sequential decision problems.

Several new features have recently been added to
SAMUEL that improve significantly both the quality of
the rules that are learned and the computational cost of
learning those rules. These improvements have been
achieved by complementing the Darwinian principles
embodied in SAMUEL with a number of mechanisms that
are more Lamarckian in flavor. While such mechanisms
may not be appropriate for systems intended to accu-
rately model biological adaptive systems, they are
appropriate for systems like SAMUEL whose primary
motivation is the practical demonstration of genetic
learning in interesting domains. This report will
emphasize the new mechanisms in SAMUEL, and illus-
trate their utility in learning some interesting behaviors
in multi-agent environments.

The reactive systems we consider here may be character-
ized by the following general scenario: The decision
making agent interacts with a discrete-time dynamical
system in an iterative fashion. At the beginning of each
time step, the agent observes a representation of the
current state and selects one of a finite set of actions,
based on the agent's decision rules. As a result, the
dynamical system enters a new state (perhaps based on
the actions of other agents in the environment) and
returns a (perhaps null) payoff. This cycle repeats
indefinitely. The objective is to find a set of decision
rules that maximizes the expected total payoff.1 Several
tasks for which reactive systems are appropriate have
been investigated in the machine learning literature,
including pole balancing [15], gas pipeline control [3],
and the animat problem [18]. For many interesting prob-
lems, including those considered here, payoff is delayed
in the sense that non-null payoff occurs only at the end of
an episode that may span several decision steps.

SAMUEL is a genetic learning system designed for
sequential decision problems. The design of SAMUEL
builds on De Jong and Smith's LS-1 approach [17] as
well as our own previous system called RUDI [7]. Some
of the key features of SAMUEL are:

• A flexible and natural language for expressing rules.

• Incremental rule-level credit assignment.

• Competition both at the rule level and at the strategy
level.

• A genetic algorithm for search the space of strategies.

• A set of heuristic rule learning operators that are
integrated with the genetic operators.

Initial studies on an evasive maneuvers task have demon-
strated that

• SAMUEL can learn general strategies for evasion that
are effective against adversaries with a broad range of
maneuverability characteristics, and under a variety

1 Barto, Sutton and Watkins [1] give a good discussion of broad
applicability of this general model.

of initial conditions (e.g., initial speed and range) [9].

• SAMUEL can learn high-performance strategies even
with with noisy sensors [13].

• SAMUEL can effectively use existing knowledge to
speed up learning [16].

Rather than detail a particular application, this report
will try to illustrate how SAMUEL can be applied to learn
several different behaviors, with a focus on tasks for an
autonomous agent in a hostile environment. New results
with three such environments are presented. We believe
that these illustrations convey something of the general-
ity of the approach.
The remainder of the paper is organized as follows: Sec-
tion 2 offers a brief overview of the SAMUEL architec-
ture. The next section presents the newest enhancements
to SAMUEL, including a more strongly biased conflict
resolution algorithm, an extension of the rule language to
include symbolic attributes organized into a generaliza-
tion hierarchy, and heuristic rule learning operators,
including SPECIALIZE, GENERALIZE, MERGE, and DELETE.
Section 4 presents a test suite of environments that each
requires the system to learn a different kind of behavior.
This is followed by some empirical studies of SAMUEL's
performance on these environments. The last section
contains a few final comments.

2 OVERVIEW OF SAMUEL

SAMUEL adopts a number of assumptions that make the
system potentially applicable to real-world problems.
First, the learning agent's perception facilities are limited
to a fixed set of discrete, possibly noisy, sensors. There
is also a fixed set of control variables that may be set by
the decision making agent. Reflecting our primary
interest in rapidly changing and uncertain environments,
the agent's decision rules are limited to simple
condition/action rules of the form

if
then

(and Cj
(and a,

where each condition c{ specifies a set of values for one
of the sensors and each action a-s specifies a setting for
one of the control variables. We call a set of such deci-
sion rules is called a reactive control strategy.

One of the key features of SAMUEL is that, unlike many
previous genetic learning systems, the knowledge
representation consists of symbolic condition-action
rules, rather than low-level binary pattern matching
primitives.2 The use of a symbolic language offers
several advantages. First, it is easier to transfer the
knowledge learned to human operators. Second, it
makes it easier to combine genetic algorithms with ana-
lytic learning methods that explain the success of the
empirically derived rules [5]. Finally, it makes it easier

2 Booker [2] shows how more expressive encodings could be
implemented in a classifier system, but experimental results are not yet
available.

to incorporate existing knowledge. A recent study [16]
addressed this final point by comparing two mechanisms
for initializing the knowledge structures in SAMUEL.
The results show that genetic algorithms can be used to
improve partially correct strategies, as well as to learn
strategies given no initial knowledge.

The genetic algorithm in SAMUEL is generational and
includes the standard genetic operators, SELECTION,
CROSSOVER, and MUTATION. SAMUEL uses a propor-
tional selection algorithm and Baker's SUS sampling
algorithm. CROSSOVER consists of exchanging rules
between two selected parents. (CROSSOVER occurs on
rule boundaries only.) MUTATION consists of making a
random change to a value in a rule. For example, MUTA-
TION might change the condition

(time is [5 10]

to
(time is [1 . . 10]).

A restricted form of mutation, called CREEP, makes a
minimal change to a value in a rule. For example, CREEP
might change the condition

(time is [5 . . 10])
to

(time is [6 . . 10])

but not to

(time is [7 . . 10]).

For further details on the operation of SAMUEL, see [9]
and [10].

3 LAMARCKIAN ASPECTS OF SAMUEL

This section describes some of the more recently
developed features of SAMUEL, especially those which
modify the internal knowledge structures of a strategy as
a direct result of the strategy's experience with the task
domain. These changes are subsequently passed along to
the strategy's offspring, reflecting an evolutionary theory
most often connected with the work of Jean Baptiste
Lamarck [6]. Lamarck developed a theory that stressed
the inheritance of acquired characteristics, in particular
acquired characteristics that are well adapted to the sur-
rounding environment. Of course, Lamarck's theory was
superseded by Darwin's emphasis on two-stage adapta-
tion: undirected variation followed by selection.
Research has generally failed to substantiate any
Lamarckian mechanisms in biological systems. For-
tunately, in artificial systems, we can easily provide that
which nature cannot.3 The primary Lamarckian feature
SAMUEL is the association of strengths with individual
rules, and the use of this information for conflict resolu-
tion. In addition, many of the rule modification operators
are Lamarckian in that they are triggered either directly
by a strategy's interaction with the environment or
indirectly by the strength of the rules within a strategy.

It might be mentioned that human cultural evolution is highly

evolution [6].

or

Ja-

il llllgui uc mcimuucu inai uuiuaii i^uiLuitu wvutunuu is »"&'"; ~i / :

Lamarckian, and subsequently much more rapid than biological !^£ii

■Ma%

jiiVa.il ai$<lj»MV

The next two sections describe these mechanisms in
detail.

3.1 CREDIT ASSIGNMENT AND CONFLICT
RESOLUTION

Each rule in SAMUEL has an associated strength that
estimates the rule's utility for the learning task [7].4

When a rule is inherited by a newly formed strategy, the
rule's strength is passed along as well. The primary way
that rule strength is used in SAMUEL is in conflict resolu-
tion, which runs as follows:

1. Find the match set, consisting of all rules that most
nearly match the current sensor readings.

2. For each possible action, define the action's bid as the
maximum strength of any rule in the match set that
specifies that action.

3. Raise each (non-null) bid to a power specified by a
parameter called the bid bias.

4. Select an action by sampling from the probability dis-
tribution defined by the modified bids.

The bid bias serves as kind of a Lamarckian control
knob.5 For example, if the bid bias = 0, all non-null bids
are considered equal, and the impact of the inherited
strength information on conflict resolution is nullified.
Any non-zero value for the bid bias results in a Lamarck-
ian system, with a varying degree of greediness. For
example, if the bid bias = 1, we get a roulette wheel
selection based on the maximum strength associated with
each action.6 If the bid bias > 1, we get a bias toward the
higher bids. (Any value of bid bias > 10 is treated as
infinite - all bids less than the maximum bid are
deleted.) Initial experience indicates that the best perfor-
mance is obtained with the maximum value for the bid
bias. This is the default value used in the experiments
described below.

3.2 LEARNING OPERATORS

SAMUEL has one binary recombination operator, CROSS-
OVER. CROSSOVER exchanges rules between two stra-
tegies.7 In its default mode, CROSSOVER first clusters
rules so that rules that fire in sequence within a high-
payoff environment tend to be assigned to the same
offspring. The idea is to promote the inheritance of

4 A rule's strength increases as a function of the mean of the
expected payoff and decreases with the variance of the expected payoff,
so that high strength indicates both high utility and high confidence in
the rule [8].

5 The bid bias was inspired by a similar mechanism in Riolo's
classifier system CFS-C [14], and is similar in effect to the notion of
using bidding noise based on a classifier's variance [4].

6 In all previously reported results with SAMUEL, the bid bias was
set to 1.

7 We prefer to rely on explicit mutation operators, rather than
overload CROSSOVER with the additional task of introducing new rules
by crossing with rule boundaries.

behavior associated with high payoff. This form of
CROSSOVER is Lamarckian since the clustering depends
directly on the strategy's past experience with the
environment.

SAMUEL currently includes six unary operators that
modify the rules within a single strategy: MUTATION,
CREEP, SPECIALIZE, GENERALIZE, MERGE, and DELETE.
Unlike previous versions of the system, SAMUEL has
now adopted the policy, common in classifier systems
[12], that all of these operators (except DELETE, of
course) are creative, i.e., any modifications are made on
a new copy of the original rule. Once created, a rule sur-
vives intact unless it is explicitly deleted or lost when its
strategy is not selected for reproduction. We have found
that this policy allows a much more aggressive applica-
tion of rule modification operators with little damage if
the changes are maladaptive.

A little more detail on the rule language is necessary
before we discuss the new rule creation operators. Each
sensor and control variable has an attribute type declared
by the user. There are four type of attributes: linear,
cyclic, structured, pattern. Linear and cyclic attributes
take on values from a linearly or cyclicly ordered
numeric range, respectively. For example, the sensor
time might be a linear attribute with values between 0
and 20. A condition for this attribute might be

(time is [5 10]

which would be matched if 5 < time < 10. The cyclic
attribute direction might take on value between 0 and
360, and a condition for this attribute might be

(direction is [270 90]

which would be satisfied if (270 < direction < 360 or
0 < direction < 90). A pattern attribute is associated with
a fixed-length string over the alphabet { 0, 1, # }, like
classifiers in classifier systems [12]. For example, the
pattern attribute visual-field might be defined as a six-bit
string, and a condition for this attribute might be

(visual-field is 0####1)

which would be matched if the first bit of visual-field is
0 and the last bit is 1. A structured attribute can assume
values from a hierarchy of symbolic values specified by
the user. For example, an attribute called distance might
be defined as shown in Figure 1. Conditions for struc-
tured sensors specify a list of values, and the condition
matches if the sensor's current value occurs in a subtree
labeled by one of the values in the list. A condition for
the distance sensor might be

(distance is [close, 400])

This would match if the sensor distance had the value
close, medium-close, very-close, 100, 200, 300, or 400.

The user also specifies an ordering for the structured
hierarchy that indicates the order relationship among the
nodes at each level of the hierarchy. The order may be
linear, cyclic, or none. For example, the distance attri-
bute above has a linear order among the leaves, as well

any

close far

very-close medium-close medium-far very-far

100 200 300 400 500 600

Figure 1: A Structured Attribute

as among the nodes at each higher level. On the other
hand, a hierarchy having to do with an object's color
may have no inherent order among the nodes at a given
level of generality. An example of a hierarchy with
cyclic order would be one based on compass direction,
with leaf values such as due-north, north-east, due-east,
north-west. The structured type allows the user to bias
the learning operators to reflect the semantics of the sen-
sor. We will now discuss the new rule creation opera-
tors, emphasizing their action on the structured type.

SPECIALIZE

The SPECIALIZE operator can be applied when a general
rule fires in a high payoff episode. (The generality thres-
hold and the payoff threshold for the operator are run-
time parameters). The operator creates a new rule whose
left-hand-side more closely matches the current sensor
values and whose right-hand-side more closely matches
the current action value. For numeric conditions (i.e.,
linear or cyclic), the operator creates a new condition
with roughly half the generality of the previous condition
by moving each endpoint half way toward the sensor
reading. For example, if the original condition is

(speed is [100 . . 1500])

and the sensor reading is

speed = 500

then the new condition would be

(speed is [300 1000]

For structured conditions, SPECIALIZE replaces each value
in the disjunct by each of its children that covers the
current sensor reading. For example, if the original con-
dition is

(distance is [close, far])

and the sensor reading is

distance = 300

then the new condition would be

(distance is [medium-close, medium-far])

If the sensor reading is

distance = 400

then the new condition would be

(distance is [medium-far])

since there is no specialization of close that covers the
sensor reading.

GENERALIZE

The GENERALIZE operator can be applied when a rule
fires due to a partial match, during a high payoff episode.
(The payoff threshold for the operator is a run-time
parameter). A partial match occurs when there is no rule
that completely matches all the current sensor readings.
The operator creates a new rule whose left-hand-side is
generalized enough to match the current sensor values.
For numeric conditions, the operator creates a new con-
dition with one of the end points set to the sensor read-
ing. For example, if the original condition is

(speed is [700 .. 1500])

and the sensor reading is

speed = 500

then the new condition would be

(speed is [500 .. 1500])

For structured conditions, GENERALIZE adds the current
sensor value to the disjunct and generalizes up the hierar-
chy if all the children of a given node are present in the
disjunct. For example, if the original condition is

(distance is [very-close, very-far])

and the sensor reading is

distance = 300

then the new condition would be

(distance is [close, very-far])

MERGE

The MERGE operator creates a new rule from two existing
high-strength rules that have identical right-hand-sides.
The new rule will match any sensor value matched by
either of the original rules. The right-hand-side of the
new rule is the same as both of the original rules. For
example, the result of MERGE of two rules:

if ((time is [1 .. 5])
(distance is [very-close]))

then ((turn is [right]))

and

if ((time is [3 .. 8])
(distance is [medium-close, medium-far]))

then ((turn is [right]))

would be

if ((time is [1 .. 8])
(distance is [close, medium-far]))

then ((turn is [right]))

The MERGE operator, in combination with the DELETE
operator below, helps to eliminate overspecialized rules
from the strategy.

DELETE

The DELETE operator is the only mechanism for remov-
ing rules from a strategy. A rule may be deleted if it
meets one or more of the following criteria: (1) the rule
has low activity level (hasn't fired recently); (2) the rule
has low strength; or (3) the rule is subsumed by another
rule with higher strength. All of these criteria are con-
trolled by run-time parameters.

The operators SPECIALIZE and GENERALIZE are clearly
Lamarckian in the sense that they are triggered only by
successful experiences and they change a strategy to
more closely reflect this experience. MERGE and DELETE
are indirectly Lamarckian in the sense that they are sen-
sitive to the strength or activity level of the rules, and
these statistics directly reflect the rule's past experience
with the environment. It should be noted, however, that
with the proper selection of run-time parameters, the
degree of Lamarckism in all these operators can be
reduced or eliminated. Future studies will explored the
effects of Lamarckism in SAMUEL in more depth.

4 A TEST SUITE OF COMPETITIVE
ENVIRONMENTS

This section describes three rather challenging testing
environments we have designed for SAMUEL. In each
environment there is one learning agent and another
adversary agent. This adversary may behave unpredict-
ably (within certain bounds). The learning agent is the
same for all three environments, but the adversaries and
the performance tasks differ. This arrangement provides
an interesting test of SAMUEL'S ability to learn various
tasks with an agent with only general purpose sensors
and effectors.8

We first describe the learning agent. The agent has a
fixed set of sensors, namely: time (since the beginning
of the episode), last-turn (by the agent), bearing (direc-
tion to adversary's position), heading (relative direction
of adversary's motion), speed (of adversary), and range
(to adversary). Each sensor has a fixed granularity that is

fairly large.9 That is, the mapping from the true world
state to observed world state is many-to-one. The sen-
sors are also noisy, and may report incorrect values. The
agent has two actions: it can change its own direction
and speed. (In two cases, the agent only learns to
directly control its turning rate, and its speed is deter-
mined by its turning rate.) Finally, the agent's own
actions are noisy. That is, the agent may select a 90
degree turn, but in fact, it may turn a little less or a little
more than it had indicated. Unlike an agent in a typical
AI planning program, our agent generally cannot accu-
rately predict the next state on the basis of the current
observed state and the action it selects. These assump-
tions, which are intended to capture some of the flavor of
robotic interactions with the real world, preclude the use
of traditional AI planning techniques, and argue in favor
of SAMUEL'S more reactive approach. We now describe
the three test environments.

4.1 EVASION

The first environment is a model of predator-prey situa-
tion in which the learning agent plays the role of prey.10

The adversary, or predator, can track the motion of the
prey and steer toward the prey's anticipated position. In
this environment, the agent learns only its turning rate;
its speed is determined by the turning rate. The process
is divided into episodes that begin with the predator
approaching the prey from a randomly chosen direction.
The predator initially travels at a far greater speed but is
less maneuverable than the prey (i.e., the predator has a
greater turning radius than the prey) and gradually loses
energy (i.e., speed) as it maneuvers. The episode ends
when either the predator captures the prey or the
predator's energy drops below a threshold and it gives
up. This requires between 2 and 20 decision steps,
depending on how many turns the predator performs
while tracking the prey. At the end of each episode, the
critic provides full payoff if the agent evades the adver-
sary, and partial payoff otherwise, proportional to the
amount of time before the agent's capture.

4.2 TRACKING

The second environment is a slightly different predator-
prey model in which the learning agent plays the preda-
tor. In this model, the goal is to stalk the prey at a dis-
tance. The adversary (the prey) follows a random course
and speed. The tracker must learn to control both its
speed and its direction. It is assumed that the tracker has
sensors that operate at a greater distance than the prey's
sensors. The object is to keep the prey within range of

8 These environments can be made available to other researchers
who wish to experiment with classifier systems or other learning
architectures. We would be happy to participate in comparative
studies.

9 In the experiments described here, all sensors are structured
attributes.

10 This environment differs from the EM problem in previous
papers [8, 9, 13, 16]. In this paper, we introduce noise into both the
agent's sensors and actions, and we vary both the initial state and the
maneuverability characteristics of the adversary. As a result, the task
is more realistic and more challenging.

the tracker's sensors, without being detected by the prey.
If the tracker enters the range of the prey's sensors, it will
be detected and captured with a probability that depends
on the tracker's distance and speed. At the end of each
episode, the critic provides full payoff if the tracker
keeps within a certain average range of the prey, propor-
tionately less payoff if the average range exceeds the
threshold, and 0 payoff if the tracker is captured by the
prey.

4.3 DOGFIGHT

The final environment pits the learning agent against a
rule-based adversary with identical sensor and action
capabilities. Like the learner in the Evasion environ-
ment, each agent controls its own turning rate, but its
speed is a deterministic function of its turning rate. Each
agent has a weapon that allows it to destroy the opponent
if the agent is heading toward the opponent and is within
the weapon's range. The object, therefore, is both to
evade the opponent's fire while getting in position to
make an attack. The learner receives full payoff for an
episode in which the adversary is destroyed, partial
payoff for a draw, and 0 payoff if the learner is destroyed.
The adversary operates according to a fixed set of rules,
and does not learn during these experiments.11

5 PERFORMANCE OF SAMUEL ON
TEST ENVIRONMENTS

This section presents some initial empirical studies of the
performance of SAMUEL on the test environments. At
intervals of five generations, a single strategy is extracted
by running extended tests on the top 20% of the current
population. The performance of the extracted strategy is
shown in the graph. All graphs represent the mean per-
formance over 10 independent runs of the system, each
run using a different seed for the random number genera-
tor. The error bars indicate one standard deviation across
the runs. All experiments used a common set of parame-

0 5 10 15 20 25 30 35 40 45 50

ters. 12

In Figure 2 the solid line shows the performance of the
current version of SAMUEL on the Evasion environment.
The initial strategy (a random walk) evades the adversary
about 31% of the time. After 50 generations, the final
strategy evades the adversary about 82% of the time.
Due to differences in the rule representation language, a
direct comparison with the previous version of SAMUEL
could not be performed. However, a good approximation
of the previous behavior of SAMUEL can be obtained by
lowering the bid bias to 1, disabling the GENERALIZE,
MERGE, and CREEP operators, and restricting SPECIALIZE

11 We plan to address adaptive adversaries in future experiments.
12 Population size = 100; crossover rate = 0.6; maximum number of

rules per strategy = 64; noisy sensors and actions for the learning
agent, 50 generations per run. After each evaluation, the remaining
space in each strategy was allocated equally to the rule creation
operators: MUTATION, CREEP, SPECIALIZE, GENERALIZE, and MERGE.

Investigation of optimal parameter settings awaits future studies.

SUCCESS
RATE 60

OF
CURRENT

BEST 40
STRATEGY

i—i i i i i i i r
0 5 10 15 20 25 30 35 40 45 50

GENERATIONS

Figure 2: SAMUEL on Evasion Environment

to the maximally general rules. The resulting learning
rate is shown by the dashed line in Figure 2. The
mechanisms in the current version appear to yield
significantly better performance, particularly in the early
stages of learning. Note again that this environment is
much more challenging than our earlier studies of the
EM problem [8, 9].

Figure 3 shows a typical learning curve for the Tracking
environment.

0 5 10 15 20 25 30 35 40 45 50

SUCCESS
RATE 60

OF
CURRENT

BEST 40 —
STRATEGY

i i i i i i i r
0 5 10 15 20 25 30 35 40 45 50

GENERATIONS

Figure 3: SAMUEL on Tracking Environment

This environment is more difficult than the Evasion
environment in the sense that a random walk has very lit-
tle chance of producing acceptable behavior. An initial
plausible strategy, shown in Figure 4, provides an over-
general but plausible initial starting point. The initial
strategy successfully tracks the adversary approximately
22% of the time. After 50 generations, the final strategy
evades the adversary over 72% of the time. It is not
currently known whether there exists a completely suc-
cessful strategy for this environment. Since the adver-

if (and (bearing is [directly-ahead])

(range is [high]))

then (and (turn is [straight])
(speed is [medium high]))

if (and (bearing is [hard-right, behind-right])

(range is [high]))

then (and (turn is [soft-right])
(speed is [medium, high]))

if (and (bearing is [directly-behind])

(range is [high]))

then (and (turn is [hard-right])
(speed is [medium, high]))

if (and (bearing is [hard-left behind-left)

(range is [high]))

then (and (turn is [soft-left])
(speed is [medium, high]))

if (and (range is [close low medium]))

then (and (turn is [straight])
(speed is [low, medium]))

Figure 4: Initial Strategy for Tracking Environment

sary follows a random route, it can, and often does, turn
directly toward the tracker and approach at high speed.
Since the probability of detection depends in part on the
tracker's own speed, it can easily be surprised and
trapped by the adversary. Future studies will shed more
light on the ultimate level of performance that can be
obtained in this setting.
Figure 5 shows a typical learning curve for the Dogfight
environment.

0 5 10 15 20 25 30 35 40 45 50

SUCCESS
RATE 60 —

OF
CURRENT

BEST 40
STRATEGY

i—i—i i i i I i r
0 5 10 15 20 25 30 35 40 45 50

GENERATIONS

Figure 5: SAMUEL on Dogfight Environment

The initial strategy (a random walk) defeats the adver-
sary approximately 40% of the time. After 50 genera-
tions, the final strategy evades the adversary about 83%

of the time. Again, it is not currently known whether
there exists a completely successful strategy for this
environment.

SAMUEL appears to perform well in these initial studies
on the new environments. Although the current version
represents a significant improvement in learning speed
over previous versions, some limitations of the system
remain. There seems to be a window of environmental
complexity in which SAMUEL performs best. If the
environment is too simple, other methods such as tradi-
tional control theory or explanation-based learning may
be much more efficient ways to develop high perfor-
mance control rules. If the environment is too complex,
SAMUEL flounders badly. As an example, the Tracking
environment requires some initial knowledge in order to
provide a minimum level of successful experience upon
which SAMUEL can build better strategies. The user
should not expect SAMUEL to develop strategies for a
difficult environment on its own. Nonetheless, we
believe that SAMUEL can be part of a methodology that
combines knowledge engineering and machine learning
in a way that significantly reduces the overall develop-
ment effort for systems that exhibit expert performance
in complex environments.

6 SUMMARY

This paper has presented a number of recent enhance-
ments to SAMUEL, emphasizing the enhanced rule
representation language and learning operators that take
advantage of this new representation. It is expected that
the inclusion of these operators will present new oppor-
tunities to merge to power of genetic algorithms with
traditional machine learning approaches.

The performance of the system has been illustrated on
three competitive environments. We encourage others in
the GA community to explore learning in environments
of at least this complexity. Complex, uncertain environ-
ments offer a promising niche for genetic learning
approaches, a niche that has not been addressed ade-
quately by traditional learning methods.

Finally, SAMUEL represents an integration of the two
major genetic approaches to machine learning, the
Michigan approach (i.e., Holland's classifier systems
[12]) and the Pittsburgh approach (i.e., De Jong and
Smith's LS-1 approach [17]). It is interesting to note that
the more Lamarckian features of SAMUEL — using rule
strengths for conflict resolution, and the triggered rule
creation operators — were inspired by mechanisms in
classifier systems. This suggests a fascinating question:
Is John Holland a Lamarckian?

Acknowledgments

I want to acknowledge the contributions toward the
development of SAMUEL by the members of the
Machine Learning Group at NRL, especially Alan
Schultz, Connie Ramsey, Diana Gordon, Helen Cobb,
and Ken De Jong. This work is supported in part by
ONR under Work Request N00014-91-WX24011.

References

[I] Barto, A. G., R. S. Sutton and C. J. C. H. Watkins
(1989). Learning and sequential decision making.
COINS Technical Report, University of Mas-
sachusetts, Amherst.

[2] Booker, L. B. (1991). The classifier system concept
description language. Proceedings of the 1990
Foundations of Genetic Algorithms Workshop.
Bloomington, IN: Morgan Kaufmann.

[3] Goldberg, D. E. (1983). Computer-aided gas pipe-
line operation using genetic algorithms and
machine learning, Doctoral dissertation, Depart-
ment Civil Engineering, University of Michigan,
Ann Arbor.

[4] Goldberg, D. E. (1988). Probability matching, the
magnitude of reinforcement, and classifier system
bidding. (TCGA Report No. 88002). Tuscaloosa:
University of Alabama, Department of Engineer-
ing Mechanics.

[5] Gordon, D. G and J. J. Grefenstette (1990). Explana-
tions of empirically derived reactive plans.
Proceedings of the Seventh International Confer-
ence on Machine Learning. Austin, TX: Morgan
Kaufmann (pp. 198-203).

[6] Gould, S. J. (1980). The Panda's Thumb. New York:
Norton & Co.

[7] Grefenstette, J. J. (1988). Credit assignment in rule
discovery system based on genetic algorithms.
Machine Learning, 3(2/3), (pp. 225-245).

[8] Grefenstette, J. J. (1989). A system for learning con-
trol strategies with genetic algorithms. Proceed-
ings of the Third International Conference on
Genetic Algorithms. Fairfax, VA: Morgan Kauf-
mann (pp. 183-190)

[9] Grefenstette, J. J., C. L. Ramsey, and A. C. Schultz
(1990). Learning sequential decision rules using
simulation models and competition. Machine
Learning, 5(4), (pp. 355-381).

[10] Grefenstette, J. J., and H. C. Cobb (1991). User's
guide for SAMUEL. NRL Report, Naval Research
Lab, Washington, DC.

[II] Holland, J. H. (1975). Adaptation in natural and
artificial systems. Ann Arbor: University Michi-
gan Press.

[12] Holland J. H. (1986). Escaping brittleness: The
possibilities of general-purpose learning algo-
rithms applied to parallel rule-based systems. In
R. S. Michalski, J. G. Carbonell, & T M. Mitchell
(Eds.), Machine learning: An artificial intelligence
approach (Vol. 2). Los Altos, CA: Morgan Kauf-
mann.

[13] Ramsey, C. L., A. C. Schultz and J. J. Grefenstette
(1990). Simulation-assisted learning by competi-
tion: Effects of noise differences between training
model and target environment. Proceedings of the

Seventh International Conference on Machine
Learning. Austin, TX: Morgan Kaufmann (pp.
211-215).

[14] Riolo, R. L. (1987). Bucket brigade performance
II: Default hierarchies. Proceedings of the Second
International Conference on Genetic Algorithms.
Cambridge, MA: Lawrence Erlbaum Assoc. (pp.
196-201)

[15] Selfridge, O., R. S. Sutton and A. G Barto (1985).
Training and tracking in robotics. Proceedings of
the Ninth International Conference on Artificial
Intelligence. Los Angeles, CA. August, 1985.

[16] Schultz, A. C. and J. J. Grefenstette (1990). Improv-
ing tactical plans with genetic algorithms.
Proceeding of IEEE Conference on Tools for AI
90, Washington, DC: IEEE (pp. 328-334).

[17] Smith, S. F. (1980). A learning system based on
genetic adaptive algorithms, Doctoral dissertation,
Department of Computer Science, University of
Pittsburgh.

[18] Wilson, S. W. (1987). Classifier systems and the
animat problem. Machine Learning, 2(3), (pp.
199-228).

